Liver glycogen metabolism during and after prolonged endurance-type exercise
American Journal of Physiology-Endocrinology and Metabolism
Vol. 311, No. 3 01 SEP 2016
Javier T. Gonzalez, Cas J. Fuchs, James A. Betts, and Luc J. C. van Loon
https://doi.org/10.1152/ajpendo.00232.2016
・持久性運動中の炭水化物ベースの燃料の役割は、約100年前から知られている(63)
・中程度から高強度の運動時における炭水化物の重要性は、1930年代に示された(20)
・運動中の筋肉グリコーゲンの利用と重要性は、1960年代に筋肉生検技術とによって示された(12, 13)
・筋肉グリコーゲンの利用に重点が置かれてた一方、肝臓グリコーゲンの評価は技術的な問題から難しかったため、運動中の肝臓グリコーゲンの使用に関するデータはわずかしか得られていなかった
・1960年代(9, 100)および1970年代(39, 77-79)に、Menghiniが開発した肝臓生検技術を利用して、人間での生体内肝臓グリコーゲン利用を報告することが可能になった。断食によって肝臓グリコーゲンが急速に減少することが示され(100)、断食または極めて低炭水化物な食事によって48時間以内に完全に枯渇することが示された(79)。また、食事に十分な炭水化物が含まれている場合に肝臓グリコーゲンの正の再補充が始まることも示された
・食後、血糖の過剰放出を緩和し食後の高血糖を和らげるために肝臓グリコーゲン合成が行われ、肝臓グリコーゲンの分解と合成は同時に起こる(69, 82, 86)。病気などで肝臓グリコーゲンの適切な合成または分解ができない場合には、多くの代謝異常が引き起こされる
・脂肪酸とグリセロールの供給によって肝臓グリコーゲンが調節されることが示されており、非エステル化脂肪酸(NEFA)とグリセロールは肝臓グリコーゲンを約84%抑制することができることが報告されている(98)
・食後から肝臓グリコーゲン濃度がピークになる(約5時間後)までのグリコーゲン補充の平均速度は約6 g/h(101)
・運動後には特定の筋肉に対してグリコーゲンのSupercompensation(超回復)が起こる(13)。持久的なトレーニングにより、通常時の筋グリコーゲン濃度はトレーニングしていない状態と比べると20~66%増加する(10, 44, 67, 97, 117)
・筋グリコーゲンの貯蔵量が多いと、筋グリコーゲンの枯渇が疲労に寄与するタイミングを遅らせるかもしれない。アスリートでは、絶対および相対的な高い運動強度で長時間の運動ができるので、筋グリコーゲンを非常に低いレベルにすることが可能となる(28)
・肝臓のグリコーゲンの貯蔵量は、持久的なトレーニングやインスリン感受性の違いによって変化しない
・トレーニングしていない人では、肝臓グリコーゲンの分解率は運動強度が高くなるに連れて著しく増加していく。持久的なトレーニングを行っているアスリートでは、高強度運動時における肝臓グリコーゲン分解の減少が見られる。最大酸素摂取量の80%を超えるような高負荷の運動になると脂肪分解が抑制されるため、肝臓グリコーゲンの消費が著しくなり血中グルコースの低下をもたらす。これが運動を制限する要因の一つとなる
・肝臓グリコーゲンの代謝は、最高酸素摂取量の80%未満の運動強度でしか研究されていないため、トレーニングされたアスリートにおける過剰なホルモン反応が、最大運動時における肝臓グリコーゲンの利用にどのように影響するかは不明
・長時間の中程度から高強度(>最高酸素摂取量の60%以上)の持久的な運動において、炭水化物が最も重要な燃料源となり、炭水化物摂取を運動中に摂取しない場合、肝臓および筋肉のグリコーゲンは最高酸素摂取量の70%で90分の運動をした後に40~60%減少する(18, 97)
・長時間の運動中の炭水化物摂取はパフォーマンスを向上させる(118)。これは血糖値の維持、炭水化物酸化率を高く維持する、筋肉グリコーゲンの利用の節約などが含まれる(19, 108)。筋肉グリコーゲンの節約は一部の研究で示されているが(96, 109, 110)、全ての研究で見られるわけではなく(27, 36, 47, 58)、測定のタイミング(96)および運動のタイプまたは筋肉繊維によるものと考えられる(110)
・運動中の適度な糖摂取(約0.6-0.8 g/min)が肝グルコース産生を抑制できることが示されており(17)、大量の糖摂取(約3 g/min)は運動中の肝グルコース産生を完全に抑制することもある(59)。これらの結果から運動中の炭水化物摂取は肝臓のグリコーゲン分解を抑制し、肝臓グリコーゲンの減少を緩和すると示唆されている(19)。摂取された炭水化物が新たに合成されたグリコーゲンとして蓄積されるか、直接的に血中にグルコースまたは乳酸として放出されるかは不明
・運動後の筋グリコーゲンの再補充は、十分な炭水化物摂取(1時間に体重1kgあたり1.2 g)によって最適化される(8, 15, 115)。糖と果糖の混合物が単独の糖(ポリマー)よりも筋肉グリコーゲン再補充をさらに増強することはほとんどないことがますます明らかになっているが(40, 106, 122)、運動後の回復初期に十分な炭水化物摂取をする際には、ブドウ糖と果糖、ブドウ糖とスクロース)の摂取がブドウ糖だけの摂取よりも良いと推測される(40)
・肝臓のグリコーゲン再合成に与える影響に関する研究は少ない(18, 29, 30, 40, 74)
・ブドウ糖のみを摂取した場合、肝臓グリコーゲンの最大再合成率は約4g肝臓グリコーゲン/hほど(18, 29, 40)。運動後のブドウ糖摂取による肝臓グリコーゲン再合成率は、混合食を摂取した場合に安静状態で報告される約6 g/hの肝臓グリコーゲン再合成率よりもかなり低い傾向になる(101)。よって、脂肪とタンパク質を炭水化物と一緒に摂取することで、肝グリコーゲンの合成を増強する可能性が推測される。混合食を摂取した場合のより大きなインスリン分泌は、肝臓グリコーゲンへの純粋なグルコースの取り込みと貯蔵を増加させる可能性がある(4, 16, 113, 115)
・安静時はフルクトースとガラクトースが肝臓で優先的に代謝される(7, 41, 78)。したがって、グルコースとフルクトースまたはガラクトースのいずれかを一緒に摂取することで、運動後の肝臓グリコーゲン再合成率をさらに増加させることができる(18, 29, 40)。一緒に摂取することで肝臓グリコーゲン再合成率は約4 g/hから約8 g/hにほぼ倍増する
・グルコースとフルクトースを一緒に摂取することで、単独摂取よりも腸管吸収速度が速くなる(54, 56, 57)
筋グリコーゲンに関しての補給の話はよく知られていますが、脳や肝臓に関してはイマイチかと思われるので、再度確認しておくとよいかなと思います。持久的な運動をする前に補給を十分にすることでトレーニング効果が高まるので、効率を高めたい場合は事前の食事、練習後の食事への意識を高めるのが効果的です。運動中に関してはまだ研究不足となっていますので、今後に期待です。脂質も大事なのでしっかり摂取しましょう。ガラクトースも効果的となるので、牛乳などが苦手ではない人は積極的に飲むとよいかもしれません。
https://sites.google.com/view/spe-gym/ 走りや身体作りの指導など、各種のご依頼はジムのサイトよりどうぞ。小田急線、千歳船橋駅から徒歩3分のパーソナルジムです。
2023年8月1日火曜日
持久的な運動中と運動後の肝臓のグリコーゲン
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿